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Abstract
In this paper, the elastic wave propagation in piezoelectric phononic crystals
with several inclusion shapes is investigated by taking the electromechanical
coupling into account. The band structures for five different shapes of scatterers
(regular triangle, square, hexagon, circle, and oval) with square lattice are
calculated using the plane-wave expansion method. The effects of the inclusion
shapes on the normalized band width are discussed. The largest complete band
gap is obtained by selecting the scatterers with the same symmetry of lattice for
the first band gap, but this rule is not valid for the second band gap.

1. Introduction

During the past few years, much effort has been devoted to the research of elastic wave
propagation in periodic composite materials, which are called phononic crystals with the
property of elastic wave band gap [1–4]. In the complete band gaps, the propagation is
forbidden for all wavevectors. With these characteristics, such structures have many potential
applications such as acoustic transducers and filters and vibration isolation technology.

Among various types of phononic crystals, piezoelectric ones, which have superior electric
effects, have recently received increasing attention. It should be pointed out that Khelif and his
co-workers used the plane-wave expansion (PWE) method to investigate a series of problems
on the piezoelectric phononic crystals and drew some important conclusions [5–7]. Hou et al
employed a similar procedure to analyze the effects of piezoelectricity on the band gaps [8].
Wu et al applied the same method to study the electromechanical coupling coefficient of
surface waves in two-dimensional piezoelectric phononic crystals [9]. Li et al studied the wave
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Figure 1. (a) The first irreducible Brillouin zone of the square lattice for two-dimensional phononic
crystals with piezoelectric phase. (b) The considered inclusion shapes and their dimensions.

propagation and localization in disordered layered piezoelectric phononic crystals taking the
electromechanical coupling into account [10, 11].

It is well known that the inclusion shapes play an important role in the band gaps, which
has been studied by Villeneuve and Piché for a similar problem in photonic crystals [12–14].
However, to our knowledge, there is no research on the effects of inclusion shapes for
piezoelectric phononic crystals. In our opinion, by considering the mechanical and electrical
coupling, some new phenomena can be found in this new type of structure. In this paper, the
effects of five different shapes of piezoelectric inclusions (i.e. regular triangle, square, hexagon,
circle, and oval) on the wave band gaps are studied using the plane-wave expansion method.
The relation between the normalized mid-gap frequency and scatter shapes for both the first
and second band gaps are discussed and some significant conclusions are drawn.

2. Equations of wave motion

We consider two-dimensional piezoelectric phononic crystals with square lattice. The lattice
constant is a. Figure 1 shows the corresponding first irreducible Brillouin zone and the five
kinds of inclusion shapes.

The constitutive equations of piezoelectric materials are given by

σi j = ci jmn εmn − eni j En,

Di = eimn εmn + εin En, (i, j, m, n = 1, 2, 3),
(1)

where σi j is the elastic stress tensor, Di the electric displacement vector, εmn the
elastic strain tensor, En the electric field intensity, ci jmn(r) the elastic constant, eni j(r)

the piezoelectric constant, and εin(r) the dielectric constant, which are all position-dependent
material constants. r = (x, y) is the position vector. In equation (1), the summation convention
is employed. Because the phononic crystals are homogeneous along the z axis, these constants
are independent of the coordinate z.
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The elastic strain tensor εmn and electric field intensity En can be expressed in the
following forms:

εmn = 1
2 (um,n + un,m), En = − ∂ϕ

∂xn
= −ϕ,n, (2)

where um = {ux, uy, uz}T is the elastic displacement vector and ϕ is the electric potential.
The differential equation of the motion in the absence of body forces is given by

σi j, j = ρüi , Di,i = 0, (3)

where ρ(r) is the mass density of the materials which is also position-dependent and the dot
denotes differentiation with respect to time.

Based on the Bloch theorem, the displacement vector ui(r, t) and electric potential ϕ can
be expanded in Fourier series:

ui (r, t) =
∑

G

ui
k+G exp[i(k · r + G · r − ωt)],

ϕ(r, t) =
∑

G

ϕk+G exp[i(k · r + G · r − ωt)], (4)

where k = (kx, ky) is the Bloch wavevector, ω the circular frequency, and ui
k+G and ϕk+G

the amplitudes of the displacement vectors and electric potential. In practical problems, it is
essential to assume a truncation N of the plane wavenumber.

According to the periodicity of the structure, the material constants, ρ(r), ci jmn(r), eni j(r),
and εin(r) can be expanded in the Fourier series

α(r) =
∑

G

αG exp(iG · r), (5)

where G = (−2π M/a, 2π M/a) is the two-dimensional reciprocal lattice vector with integer
M , α is either one of ρ, ci jmn , eni j , or εin , and αG is either one of ρG , ci jmn

G , eni j
G , or εin

G , which
are the corresponding Fourier coefficients of the material constants. The expression of αG is

αG = S−1
∫

S
d2rα(r) exp(−iG · r), (6)

where S is the area of one unit cell of the lattice. The integral in equation (6) can be simplified
as follows:

αG =
{

αA f + αB(1 − f ) for G = 0

(αA − αB )FG for G �= 0,
(7)

where αA and αB denote the material constants of the inclusion phase and the matrix medium,
respectively, and f = SA/S is the filling fraction ratio of the inclusion, where SA is the area of
the inclusion within a unit cell of the lattice. The structure function FG is defined by

FG = S−1
∫

SA

d2r exp(−iG · r). (8)

3. Expressions of structure function and the generalized eigenvalue equation

For the regular triangle, square, hexagon, circle, and oval scatterers shown in figure 1,
FG is denoted by F t

G, F s
G , Fh

G , Fc
G , or Fo

G , respectively. The results of equation (8) are
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expressed in [15–17]:

(A) Regular triangle
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(9)

where Re and Im are the real and imaginary parts of F t
G and Gx and G y are the x and y

components of G.

(B) Square
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(10)

(C) Hexagon
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(11)

(D) Circle

Fc
G = 2 f J1(Gl)

Gl
, (12)
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Table 1. Material constants of BaTiO3 and polymer.

Mass density
(103 kg m−3)

Elastic constant
(109 N m−2)

Piezoelectric constant
(C m−2)

Piezoelectric constant
(10−9 C2 N−1 m−2)

Materials ρ c11 c12 c44 c66 e13 e15 e33 ε11 ε33

BaTiO3 5.8 166 77 43 44.5 −4.4 11.6 18.6 11.2 12.6
Polymer 1.15 7.8 4.7 1.6 1.55 0 0 0 0.0398 0.0398

where J1 (·) is the Bessel function of the first kind of order one.

(E) Oval

Fo
G = 2 f J1(G ′bov)

G ′bov
, (13)

where G ′
x = Gx aov/bov, G ′

y = G y and aov and bov are the lengths of the long and short half
axes.

Substituting equations (1), (2), (4), and (5) into equation (3), we obtain the following
generalized eigenvalue equation in the matrix form

ω2RU = QU , (14)

where U = {ux
G, uy

G, uz
G,ϕG}T is the generalized displacement vector, R and Q the 4N × 4N

matrices which are functions of k, and G and G′ the Fourier coefficients of the material
constants. The elements of matrices R and Q are listed in the appendix. It should be noted that
the xy-mode and z-mode are decoupled.

4. Numerical results and discussion

In this section, numerical computation for the piezoelectric phononic crystals—
BaTiO3/polymer—is performed. The material constants used in the calculation are listed in
table 1.

For the five types of piezoelectric phononic structures mentioned above, figures 2–4 show
the band structures in the first Brillouin zone for the symmetry axis with bov/aov = 0.8 for
the oval rods. The filling fraction f = SA/S is taken as 0.35. For the normalized frequency
ωa/2πct, ct is the velocity of transverse waves in the polymer. The xy-mode and z-mode are
shown by the solid and dashed lines and the gray zones denote the complete band gaps for
elastic waves.

It can be observed that the band structures change pronouncedly for different cases. For
the regular triangle rods presented in figure 2(a), a third complete band gap exists but not in
other types. The second band gap is wider than the first one in figure 2(a). However, for the
square scatterers in figure 2(b), the case is just the opposite. The first band gap is much wider
not only than the second one but also than that of the regular triangle case. It should be noted
that the first band gap is wider and the contrast of the width between the first and second gaps
is more apparent for square inclusions than the other cases which are displayed in figures 2–4.

Moreover, from figures 3(a) and (b), it can be seen that the contrast of the width between
the first and second gaps in each case is not apparent. However, the contrast is obvious for
the first gaps between figures 3(a) and (b) and the same as the second gaps. The positions of
the band gaps for hexagon and circle cases are different. The corresponding gaps are higher in
figure 3(a) than those of figure 3(b). It means that the elastic waves propagating freely for the
hexagon case may be stopped for the circle case.
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Figure 2. The band structures of two-dimensional piezoelectric phononic crystals with f = 0.35:
(a) for regular triangle inclusions and (b) for square inclusions. The gray regions denote complete
band gaps. The solid and dashed lines denote the xoy mode and z mode.

Figure 3. The band structures of two-dimensional piezoelectric phononic crystals with f = 0.35:
(a) for hexagon inclusions and (b) for circle inclusions. The gray regions denote complete band
gaps. The solid and dashed lines denote the xoy mode and z mode.

The most prominent feature in figure 4 is that, although there is little difference of the width
between the first and second band gaps just like figures 3(a) and (b), they are narrower than the
two cases in figure 3. In other words, the band gap properties for this kind of piezoelectric
phononic crystals have less superiority.

In order to analyze the effects of inclusion shapes on the band gap, the normalized band
gap widths, �ω/ωg, are computed for different ratios f , where �ω is the band gap width and
ωg is the normalized mid-gap frequency. The results for the first and second band gaps are
illustrated in figures 5 and 6.

From figure 5, we can clearly observe that the widths of band gaps are changed by altering
the shapes of the scatterers. For both the square and circle scatterers, the values increase with
increase of filling fraction ratio f . However, for regular triangle, hexagon, and oval inclusions,
the curves firstly increase and then decrease. Especially for regular triangle rods, the normalized
gap width becomes zero when f reaches 0.475.
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Figure 4. The band structures of two-dimensional piezoelectric phononic crystals with f = 0.35
for oval with bov/aov = 0.8 only. The gray regions denote complete band gaps. The solid and
dashed lines denote the xoy mode and z mode.

Figure 5. The normalized widths of the first complete band gaps as a function of the filling fraction
ratio f for five different inclusions.

Another important feature in figure 5 is that in the considered regions the normalized gap
width for the square rods is larger than any other kind of geometric shape. The reason is that the
symmetry of rods is the same as the lattice geometry, which is similar to the case of photonic
crystals investigated by Wang et al [15] and steel/air systems studied by Zhong et al [17]. This
is why the first band gap in figure 2(b) is larger than the other four shapes for f = 0.35.

The most noticeable feature in figure 6 is that the normalized band gap width for square
rods is the smallest among the considered five types and it does not change remarkably with
f increasing. Both of the features in figure 6 are very different from those in figure 5, which
does not obey the rule that the band gap width is the largest when the inclusion symmetry is the
same as that of the lattice. So this rule is not valid in all the considered frequency regions for
the second complete band gap. It can also be seen that for the case of oval scatterers the value of
�ω/ωg increases with f increasing unlike the curves in figure 5. The curves for both hexagon
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Figure 6. The normalized widths of the second complete band gaps as a function of the filling
fraction ratio f for five different inclusions.

and circle cases in figure 6 are similar to those in figure 5, which means that the properties do
not change obviously between the first and second band gaps.

5. Conclusions

In this paper, the plane-wave expansion method is used to study the elastic wave band gaps of
piezoelectric phononic crystals with square lattice for regular triangle, square, hexagon, circle,
and oval inclusions, respectively. The band gaps for the five cases are calculated. The effects of
the inclusion shapes are discussed. From the results, the following conclusions can be drawn:

(1) There is a third complete band gap for the regular triangle rods, but not in the other cases.
(2) For the case of f = 0.35, the first band gap for square inclusions is the largest and the

second one is the smallest among the considered five cases.
(3) The locations of band gaps for hexagon and circle rods are quite different from each other.

Both the first and second band gaps are very narrow for the oval scatterers.
(4) When the shape symmetry of the inclusions is identical to the lattice, the largest complete

band gap is obtained for the first band gap. But this rule is not valid for the second band
gap.
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Appendix

The elements of matrices R and Q in equation (14) are expressed as:

RG,G ′ =
⎡

⎢⎣

ρG−G ′

ρG−G ′

ρG−G ′

0

⎤

⎥⎦ , (A.1)
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QG,G ′ =

⎡
⎢⎢⎣

Q
(1,1)
G,G ′ Q

(1,2)
G,G ′ 0 0

Q
(2,1)

G,G ′ Q
(2,2)

G,G ′ 0 0

0 0 Q
(3,3)

G,G ′ Q
(3,4)

G,G ′

0 0 Q
(4,3)
G,G ′ Q

(4,4)
G,G ′

⎤
⎥⎥⎦ , (A.2)

where

Q
(1,1)

G,G ′ = c11
G−G ′(k + G)1(k + G′)1 + c66

G−G ′(k + G)2(k + G′)2, (A.3)

Q
(1,2)
G,G ′ = c12

G−G ′(k + G)1(k + G′)2 + c66
G−G ′(k + G)2(k + G′)1, (A.4)

Q
(2,1)
G,G ′ = c12

G−G ′(k + G)2(k + G′)1 + c66
G−G ′(k + G)1(k + G′)2, (A.5)

Q
(2,2)

G,G ′ = c11
G−G ′(k + G)2(k + G′)2 + c66

G−G ′(k + G)1(k + G′)1, (A.6)

Q
(3,3)

G,G ′ = c44
G−G ′(k + G)1(k + G′)1 + c44

G−G ′(k + G)2(k + G′)2, (A.7)

Q
(3,4)
G,G ′ = e15

G−G ′(k + G)1(k + G′)1 + e15
G−G ′(k + G)2(k + G′)2, (A.8)

Q
(4,3)
G,G ′ = Q

(3,4)
G,G ′, (A.9)

Q
(4,4)

G,G ′ = −ε11
G−G ′(k + G)1(k + G′)1 − ε11

G−G ′(k + G)2(k + G′)2. (A.10)
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